

EDUCATION

Dec 2026 Pittsburgh, PA	Carnegie Mellon University MS in Computer Science - Machine Learning & Natural Language Processing (GPA: 4.17/4.0) <i>Coursework: Advanced Natural Language Processing, Generative AI, Machine Learning</i>
June 2025 Pilani, India	Birla Institute of Technology and Science, Pilani BE in Computer Science (CGPA: 9.91/10 , Institute Silver Medalist - Rank 2)

PUBLICATIONS [ALL FIRST/CO-FIRST AUTHOR]

ICCV'25, EACL'26	CAIRE: Cultural Attribution of Images by Retrieval-Augmented Evaluation. CEGIS @ ICCV'25, EACL'26 (Main Conference) Paper Code
LREC-COLING'24	BERT-based Idiom Identification using Language Translation and Word Cohesion. Multiword Expressions and Universal Dependencies @ LREC-COLING'24 Paper Code
IEEE IS'24	Interpretable Feature Optimization for Sadness Recognition in Speech Emotion Analysis. IEEE 12th International Conference on Intelligent Systems (IS) Paper Code

EXPERIENCE

Carnegie Mellon University, Machine Learning Department Graduate Student Researcher	Pittsburgh, PA Aug 2025 – Present
<ul style="list-style-type: none">Developing GameDevBench, a scalable benchmark for evaluating multimodal LLM and computer-use agents (CUAs) in agentic Godot game development, comprising ~ 200 tutorial-derived tasks with automated task and test generation.Built automated task-quality scoring using pixel-level metadata and VLM-judge-assessment, eliminating manual validation.	

Carnegie Mellon University, Language Technologies Institute Research Intern (Undergraduate Thesis), NeuLab Advisor: Prof. Graham Neubig Code	Pittsburgh, PA May 2024 – Mar 2025
<ul style="list-style-type: none">Built CAIRE, a retrieval-augmented evaluation system for cultural attribution in images, grounding visual content via large-scale entity linking. Implemented efficient retrieval over a 6M-entity FAISS index with multimodal SigLIP embeddings, outperforming LVLM baselines on fine-grained object grounding (FOCI benchmark).Improved visual entity linking precision by reranking retrieved candidates using text-based semantic disambiguation.Showed that CAIRE enables open-source VLMs to outperform frontier models on cultural relevance evaluation by conditioning predictions on retrieved cultural context, achieving +28% F1 and Pearson $r > 0.65$ alignment with human judgments; accepted at ICCV-W and EACL (Main Conference).	

Amazon, Applied Science Summer Intern Advisor: Jitenkumar Rana	Bangalore, India May 2023 – Aug 2023
<ul style="list-style-type: none">Product entity extraction (NER): fine-tuned a BERT-based token classification model to extract brand and model fields from noisy product webpages, producing structured entities for downstream product knowledge bases.Shipping cost anomaly detection: trained regression models to estimate expected shipping costs beyond a rule-based heuristic, flagging anomalies via prediction residuals and reducing false negatives by $\sim 25\%$; deployed via a Django REST API.	

Nanyang Technological University Research Intern, SpeechLab Advisor: Prof. Chng Eng Siong Code	Singapore Mar 2024 – Sep 2024
<ul style="list-style-type: none">Built a text-based depression detection system by LoRA-fine-tuning LLaMA-3.1-8B on DAIC-WOZ, reformulating prediction as PHQ-8-aligned symptom scoring for interpretability and structured reasoning; leveraged transcript preprocessing and LLM-based synthetic dialogue augmentation, achieving +7.1% F1 over prior text-only baselines.	

PROJECTS

Hybrid Retrieval RAG System with Qwen2.5

- Built a Qwen2.5-7B RAG system using hybrid retrieval (MXBAI dense + BM25 sparse) with RRF.
- Implemented grid-search evaluation over retrieval hyperparameters using accuracy, BLEU, BERTScore, and LLM-as-Judge.

Representation-Level Unlearning in Multimodal Foundation Models

- Proposed RCRU, a representation-level unlearning method for LLMs with stable, on-manifold forgetting.
- Developed concept-wise visual unlearning for VLMs by steering vision-encoder embeddings toward neutral centroids.

Structured Agentic Reasoning with Diffusion Language Models

- Fine-tuned diffusion language models (Fast-dLLM v2, 1.5B) to act as ReAct agents, generating structured Thought–Action–Observation trajectories and improving tool-call reliability ($5\% \rightarrow 60\%$) while reducing trajectory length ($9.2 \rightarrow 6.4$ steps).

SKILLS

Programming & OS: Python, C/C++, Java, SQL, Linux, Git, REST APIs, High Performance Computing Clusters (HPC)
Libraries & Frameworks: PyTorch, Scikit-Learn, HuggingFace, PEFT (LoRA), FAISS, Django, NumPy, Pandas